Simultaneous adaptation to non-collinear retinal motion and smooth pursuit eye movement

نویسندگان

  • J. Rhys Davies
  • Tom C.A. Freeman
چکیده

Simultaneously adapting to retinal motion and non-collinear pursuit eye movement produces a motion aftereffect (MAE) that moves in a different direction to either of the individual adapting motions. Mack, Hill and Kahn (1989, Perception, 18, 649-655) suggested that the MAE was determined by the perceived motion experienced during adaptation. We tested the perceived-motion hypothesis by having observers report perceived direction during simultaneous adaptation. For both central and peripheral retinal motion adaptation, perceived direction did not predict the direction of subsequent MAE. To explain the findings we propose that the MAE is based on the vector sum of two components, one corresponding to a retinal MAE opposite to the adapting retinal motion and the other corresponding to an extra-retina MAE opposite to the eye movement. A vector model of this component hypothesis showed that the MAE directions reported in our experiments were the result of an extra-retinal component that was substantially larger in magnitude than the retinal component when the adapting retinal motion was positioned centrally. However, when retinal adaptation was peripheral, the model suggested the magnitude of the components should be about the same. These predictions were tested in a final experiment that used a magnitude estimation technique. Contrary to the predictions, the results showed no interaction between type of adaptation (retinal or pursuit) and the location of adapting retinal motion. Possible reasons for the failure of component hypothesis to fully explain the data are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous adaptation of retinal and extra-retinal motion signals

A number of models of motion perception include estimates of eye velocity to help compensate for the incidental retinal motion produced by smooth pursuit. The 'classical' model uses extra-retinal motor command signals to obtain the estimate. More recent 'reference-signal' models use retinal motion information to enhance the extra-retinal signal. The consequence of simultaneously adapting to pur...

متن کامل

Do we have direct access to retinal image motion during smooth pursuit eye movements?

One way the visual system estimates object motion during pursuit is to combine estimates of eye velocity and retinal motion. This questions whether observers need direct access to retinal motion during pursuit. We tested this idea by varying the correlation between retinal motion and objective motion in a two-interval speed discrimination task. Responses were classified according to three motio...

متن کامل

Extra-retinal adaptation of cortical motion-processing areas during pursuit eye movements.

Repetitive eye movement produces a compelling motion aftereffect (MAE). One mechanism thought to contribute to the illusory movement is an extra-retinal motion signal generated after adaptation. However, extra-retinal signals are also generated during pursuit. They modulate activity within cortical motion-processing area MST, helping transform retinal motion into motion in the world during an e...

متن کامل

Direction and extent of perceived motion smear during pursuit eye movement

Smooth pursuit eye movements superimpose additional motion on the retinal image of untracked visual targets, potentially leading to the perception of motion smear and a distortion of the perceived direction of motion. Previously, we demonstrated an attenuation of perceived motion smear when the untracked target moves in the opposite direction of an ongoing pursuit eye movement. In this study, t...

متن کامل

A population decoding framework for motion aftereffects on smooth pursuit eye movements.

Both perceptual and motor systems must decode visual information from the distributed activity of large populations of cortical neurons. We have sought a common framework for understanding decoding strategies for visually guided movement and perception by asking whether the strong motion aftereffects seen in the perceptual domain lead to similar expressions in motor output. We found that motion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Vision Research

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2011